CAPÍTULO II

Topografía de la Conducta en Función de la Configuración de las Superficies: El Caso del Nivel Operante

Felipe Cabrera*, Pablo Covarrubias y Ángel Andrés Jiménez

UNIVERSIDAD DE GUADALAJARA
CAPÍTULO II

* Laboratorio de Conducta y Cognición Comparada. Centro Universitario de la Ciénega (CUCI), Universidad de Guadalajara, Ocotlán, Jalisco. Dirigir correspondencia a fcabrera@cencar.udg.mx. Los autores agradecen los comentarios de Josué Camacho para la presente versión del manuscrito.
Catania (1992) al definir el estímulo discriminativo como aquel que “señala la ocasión para que el responder sea reforzado” (p. 130), remite al lector a revisar el concepto de posibilitador de acción (en inglés affordance) haciendo referencia a la aproximación ecológica de la percepción planteada por Gibson (1979). Por otra parte, Timberlake (1993a), a pesar de enmarcar de forma equivoca la obra de Gibson como participe de la revolución cognitiva1, cita la misma obra (i.e. Gibson, 1979) y sugiere que un concepto tal como el de posibilitador de acción es necesario para el estudio del procesamiento de estímulos y de las condiciones iniciales al aprendizaje (i.e. restricciones para el aprendizaje), argumentando que, en general, el Análisis Experimental de la Conducta no lo ha incluido como parte central de sus investigaciones (Timberlake, 1988). Finalmente, desde una perspectiva asociacionista del aprendizaje, para explicar el efecto que tiene el contexto físico2 en el mantenimiento del responder en procedimientos operantes, aún sin reforzamiento (i.e. extinción, Bouton, 2012; Rosas, Todd & Bouton, 2013) ha sugerido considerar el concepto de posibilitador de acción propuesto por Gibson (1979), ya que es necesario para explicar conductas voluntarias que están inherentemente bajo el control del contexto, de manera independiente al reforzador.

Al parecer, el concepto de posibilitador de acción no es ajeno a la descripción de la conducta en contextos operantes, al menos para las tres nociones descritas en el párrafo anterior (i.e. el control del estímulo, las condiciones iniciales para el aprendizaje y el control conductual del contexto). Para comprender la razón por la que se ha recurrido a los posibilitadores de acción para dar cuenta, al menos indirectamente, de diversos tópicos relevantes para el análisis de la conducta, es necesario definirlo.

La configuración de las superficies y los posibilitadores de acción
Bajo la premisa de la complementariedad y reciprocidad inherente entre el ambiente y el organismo (Costall, 2004; Lombardo, 1987), Gibson (1979) definió al posibilitador de acción como la propiedad del ambiente que ofrece y provee a un organismo oportunidades para la actividad, relativo a tamaño del organismo. “Lo que percibimos cuando vemos los objetos son sus posibilidades de acción (affordances), no sus cualidades” (p. 134). Podemos discriminar ciertas cualidades, sin embargo a lo que prestamos atención de manera natural es a sus posibilidades de acción.

Aunque el posibilitador de acción implica tanto al ambiente como al organismo, algunos autores (Turvey, 1992) prefieren hacer explícita la distinción entre el posibilitador de acción ambiental (el soporte ambiental para las actividades del organismo) y, de manera recíproca, la noción de efectividad (Turvey, 1984). Algunos discuten la definición de Gibson propuesta en la revolución cognitiva (Smith, 2007). Es decir, el conjunto de elementos que envuelven la situación que el organismo enfrenta (Smith, 2007. Ver capítulo de Bernal-Gamboa en este mismo libro).

---

1 La apreciación de que la obra de Gibson fue parte de la revolución cognitiva es errónea, pues se considera a Gibson, junto con Skinner, un fuerte oponente contra el cognoscitivismo, ya que considera que la revolución cognitiva perpetúa y promueve muchos de los viejos errores de la psicología. “James Gibson engaged in a sustained attack upon cognitivism over many years, from thirties until his death in 1979, and like Skinner, his motives were frankly epistemological” (Costall, 1984, p. 110).

2 Es decir, el conjunto de elementos que envuelven la situación que el organismo enfrenta (Smith, 2007. Ver capítulo de Bernal-Gamboa en este mismo libro).
1992) o habilidad (Chemero, 2003) que se refiere a la propiedad específica del organismo para la que es soporte dicho ambiente.

Heyser & Chemero (2012), aludiendo a la reciprocidad inherente con el organismo, han descrito los posibilitadores de acción como las “propiedades funcionales de los objetos” (p. 237), en donde una propiedad funcional se actualiza según la efectividad o habilidad particular del organismo para interactuar con ellos.

El presente capítulo tiene por objetivo describir la relevancia que los posibilitadores de acción tienen para enriquecer el cuerpo teórico del análisis de la conducta, y con ello abordar dos tópicos que han tenido poca atención en el análisis experimental de la conducta, como lo son el nivel operante y las topografías de conducta.

Relevancia de los posibilitadores de acción para el Análisis Experimental de la Conducta

“Localmente, la conducta crea ambientes, así como ambientes específicos crean conducta”

(Timberlake, 1993b, p. 700).

A pesar de la relevancia del concepto de posibilitador de acción, así como su connotación intrínsecamente conductual, una razón por la que paradójicamente no se ha extendido al Análisis Experimental de la Conducta (AEC) puede ser, desde nuestro punto de vista, porque los estímulos antecedentes a la conducta han perdido un papel protagónico en el condicionamiento operante por el énfasis en el control por las consecuencias (Staddon, 1983), es decir, un estímulo antecedente es relevante sólo en términos de las contingencias de reforzamiento, y no viceversa.

¿Qué relevancia tiene para el AEC un estímulo que, aunque potencialmente controle cierta conducta, no constituye una ocasión para el reforzamiento? ¿Cae fuera de su campo de interés? ¿O se asume que todo estímulo perceptible por el organismo forma parte de una contingencia de reforzamiento? Al menos, desde la perspectiva de los autores citados en el primer párrafo, sí es relevante para describir el control de estímulos (Catania, 1992), sí es de interés porque ofrece una explicación que reconoce la importancia de las condiciones iniciales del aprendizaje y del procesamiento de los estímulos (Timberlake, 1993), y porque se reconoce que hay estímulos que controlan la conducta voluntaria del sujeto al margen de una contingencia de reforzamiento explícita (Bouton, 2012; Rosas et al., 2013).

El papel secundario que tienen los estímulos antecedentes a la conducta es compatible con la apreciación que hace Timberlake (1988), argumentando que Skinner (1938) radicalizó la concepción que tuvo de la conducta en general, distinguiendo de manera exclusiva entre conducta emitida y conducta evocada, proponiendo que la conducta operante (i.e. emitida) era independiente y no estaba bajo el control incondicional de ningún estímulo antecedente (ver Keller & Schoenfeld, 1950). La única manera en
la que una conducta emitida entraría bajo el control del estímulo antecedente sería a través de un proceso de reforzamiento, convirtiéndose entonces dicho estímulo en una ocasión para el reforzamiento, es decir en un estímulo discriminativo.

El nivel operante: un eslabón olvidado

Sin que sea considerada una conducta emitida que se encuentre controlada por sus consecuencias, ni como una respuesta evocada por un estímulo bajo un procedimiento respondiente, el nivel operante de una conducta, o también denominado, respuestas incondicionales a un operando (Kiernan, 1965), es relevante para nuestros propósitos de argumentar la importancia de los posibilitadores de acción en el análisis de la conducta. El nivel operante son las respuestas ejecutadas a un operando, pero que aún no se encuentran controladas por el reforzador, y por lo tanto, cualquier estímulo antecedente aún no puede considerarse que sea una ocasión para el reforzador (Keller & Schoenfeld, 1950).

En la actualidad, el nivel operante no representa en el AEC un fenómeno en particular que merezca mucho de su atención. Hace varias décadas sí tuvo un papel relevante (Goodrick, 1965; Kiernan, 1965; Margulies, 1961; Mitchell, 1970; Segal, 1959; Schoenfeld, Antonitis & Bersh, 1950), no tanto porque representara un reto teórico o de análisis qué dilucidar, sino por un interés principalmente metodológico, como por ejemplo, separar a los sujetos en grupos homogéneos respecto a sus respuestas al operando (Schoenfeld et al., 1950) y para contrastarse con la tasa de respuesta en periodos de condicionamiento y de extinción (Bullock, 1950; Notterman, 1959; Segal, 1959).

No sólo respecto al nivel operante, sino que en general, pocos estudios se han focalizado en el análisis de las conductas en condiciones iniciales, por ejemplo el efecto que tiene la lateralidad y velocidad de locomoción sobre el fenómeno de preferencias de girar a izquierda o derecha (Covarrubias, Jiménez & López, en revisión), teniendo implicaciones para la alternación espontánea y la conducta de elección (Rodríguez, Gómez, Alonso & Afonso, 1992). De este mismo modo pero en procedimientos operantes, el nivel operante, como una condición inicial al aprendizaje, representa un reto a ser explicado dado que constituyen respuestas a un operando previamente al procedimiento de condicionamiento, es decir, son respuestas incondicionales sin que sean evocadas por ningún estímulo (Keller & Schoenfeld, 1950), y más aún, sin ser controladas por un estímulo que sea ocasión para el reforzamiento. Timberlake (2004) se ha referido a ellas como proto-operantes u operantes candidatas, pues al no estar aún bajo un procedimiento de condicionamiento explícito, cualquier conducta emitida es potencialmente seleccionada para convertirse en una operante al ser diferencialmente reforzada. No obstante, no se ofrece un análisis detallado de la formación o configuración de las proto-operantes.

La conducta emitida en su nivel operante ha sido atribuida también al valor reforzante de la retroalimentación cinestésica que ocurre al realizar la propia actividad, es decir, por un reforzamiento sensorial o perceptual (Kish, 1966, para una revisión ver Roca, 2010), ya que hay evidencia de que cualquier cambio ambiental perceptible por el organismo que sea contingente a la conducta puede fungir como
reforzador (Kish, 1955), y la presión de la palanca, al producir un cambio perceptible táctilmente por el organismo puede reforzar sensorialmente al organismo (Kish & Barnes, 1961).

Estudios sobre el control motor de la conducta (Connolly, 1973), han distinguido dos tipos de retroalimentación a partir de la conducta motora de un organismo; una es la consecuencia intrínseca que surge del sistema efecto al ejecutar una acción (Rosenbaum, 2010), y otra es la consecuencia o estado final que provee una información consecuente acerca de la terminación de la conducta (Connolly, 1973; Rosenbaum, van Heugten & Cadwell, 1996). En el caso de una rata que explora la cámara experimental operante, la consecuencia intrínseca sería la sensación de la superficie de la palanca bajo su extremidad al ejecutar la acción de apoyarse sobre ella, y la consecuencia final sería conseguir mayor altura y duración (quizás mayor confort) durante su exploración de la parte superior de la cámara, “respondiendo” o haciendo contacto sobre la palanca.

Estas conductas son un ejemplo, en una situación operante, de lo que son los posibilitadores de acción, pues la palanca ubicada en determinado lugar entre las cuatro paredes que constituyen la cámara experimental es parte del contexto que posibilita y genera conducta, al margen de los reforzadores explícitos que eventualmente se entregarían (ver Rosas et al. 2013). Dichos elementos del contexto, descritos en términos de estimulos específicos, pueden constituir una ocasión para que sea mayormente efectiva la conducta exploratoria en ciertos lugares de la cámara experimental (véase Catania, 1992; Skinner, 1938), y representan condiciones iniciales para el aprendizaje (ver Timberlake, 1993), ya que el posibilitador de acción lo es siempre relativo a las características del organismo en cuestión (Gibson, 1979). Quizá con ello pueda afirmarse que el posibilitador de acción no evoca una respuesta propiamente de manera respondiente, pero tampoco es una conducta emitida al margen de los estímulos antecedentes identificables en la situación.

Al parecer, el papel marginal que ha tenido el estudio del nivel operante ha derivado en la necesidad de atribuir propiedades reforzantes3 a la conducta per se, o a cambios mínimos que potencialmente son percibidos visual, auditiva o táctilmente por el organismo. Por otra parte, si en lugar de atribuir una propiedad reforzante se enfatiza la reciprocidad intrínseca entre el organismo y el ambiente (Gibson, 1979), es en el nivel operante en donde se cristalizan, para su análisis, los elementos del ambiente que constituyen el posibilitador de la actividad natural o espontánea del organismo, lo cual, al margen de si la actividad misma en interacción con el ambiente tiene un valor reforzante con todos sus atributos, la configuración misma de las superficies de la cámara experimental controlarían la conducta del organismo en su nivel operante.

En ambos casos, el estudio del nivel operante abandona su posición marginal y toma un status fundamental en el cuerpo teórico y empírico en el AEC, pues aún si se aceptara el argumento del

---

3 Tomando la definición que Kish (1955) hace para el reforzamiento: “a) el reforzador ocurre como resultado, o en contigüidad temporal, con la respuesta de un organismo, b) la ocurrencia del reforzador incrementa la fuerza en el desempeño de la conducta, y c) la ocurrencia del reforzador conduce al aprendizaje” (p. 261).
reforzamiento sensorial, el nivel operante constituiría el eslabón que conecta los movimientos espontáneos con las operantes, y demarcaría las propiedades mínimas necesarias para que un cambio ambiental pueda constituirse en reforzador. Más aún, en el segundo caso, en el que se argumenta que el nivel operante puede ser función de la configuración de las superficies, estarían implicadas las propiedades que se han discutido respecto a los posibilitadores de acción (Chemero, 2003), de la conducta motora (Kelso, 1982; Rosenbaum, 2010) y por ende, de la sinergia explicativa de la psicología ecológica dentro de los postulados teóricos generales del AEC (ver Costall, 1984, 2004; Fetterman, Stubbs & MacEwen, 1992; Morris, 2009; Rilling, 1992).

La topografía de respuesta: el eslabón escondido

¿Con cuál extremidad presionará la palanca un cangrejo? (ver Abramson & Feinman, 1990). A diferencia del nivel operante, la topografía de respuesta fue escondida por la cámara experimental. En su descripción de la conducta operante, Skinner (1938) redujo la importancia de la topografía de la conducta, enfatizando sólo la función, esto es, la relación entre la conducta y el ambiente (Chiesa, 1994). “La topografía general de la conducta operante no es importante, porque en su mayoría, si no es que toda conducta operante, es condicionada” (Skinner, 1938, pp. 45-46).

La topografía, aunque independiente de la función de la respuesta, está dentro de una subclase de respuesta que es necesaria para el condicionamiento; según Skinner (1938): “la topografía y la diferenciación de la respuesta siguen la misma regla original que el condicionamiento operante; las respuestas con la configuración requerida deben existir previamente al reforzamiento para que la diferenciación o el condicionamiento tenga lugar” (p. 338, énfasis nuestro). Por ello, en el nivel operante al no existir aún una clase de respuesta formada, dado que no hay procedimiento que diferenie la clase a ser seleccionada (i.e. el reforzamiento), la topografía tiene un papel central, pues de ella se origina la conducta a ser reforzada. Más aún, la topografía de la conducta es fundamental dado que se asume que la configuración de la respuesta debe existir previamente al reforzamiento.

Para explicar la ocurrencia de esta topografía de respuesta requerida, una posibilidad es recurrir a la hipótesis del reforzamiento sensorial, ya que el reforzamiento cinestésico es intrínseco al movimiento efectuado, es decir, su topografía, por lo que esta configuración de respuesta requerida, según el reforzamiento sensorial ya ha sido reforzada al momento mismo de efectuarse. En este caso, al apelar al mismo concepto de reforzamiento, sólo que sensorial, la ubicuidad del término ‘reforzador’ para explicar la conducta le genera vaguedad e imprecisión. Una explicación alternativa es que quizás, además de la posible retroalimentación cinestésica al ejecutar un movimiento, la configuración de la conducta en su nivel operante o incondicional está determinada en gran medida por la configuración de la superficie y sus posibilitadores de acción.

Análisis de las topografías en cámaras operantes han mostrado que las ratas al presionar palancas muestran diversidad de configuraciones, tales como morder la palanca, apoyarse sobre ella con la nariz
CAPÍTULO II

o pararse sobre ella (Gallo, Duchatelle, Elkhessaimi, Le Pape & Desportes, 1995; Gallo, Elkhessaimi, Desportes & Duchatelle, 1991). Las diferencias topográficas que pueden observarse entre el nivel incondicionado de una operante y las respuestas ya bajo el efecto de contingencias de reforzamiento, o en extinción, son evidentes. Entre los hallazgos experimentales se encuentra la fuerza ejercida sobre la palanca (Notterman, 1959), su duración (Margulies, 1961), y su variabilidad (Notterman, 1959). De hecho, la variabilidad topográfica es característica en la conducta en su nivel operante y en etapas tempranas de los procedimientos operantes o instrumentales, reduciéndose dicha variabilidad con las contingencias de reforzamiento (Schwartz, 1980; Stokes & Balsam, 1991).

El aspecto de la variabilidad topográfica de la conducta en su nivel operante es relevante entonces, porque de las topografías en este periodo se generarán, por inducción conductual y diferenciación, las conductas que serán controladas por las consecuencias (Keller & Schoenfeld, 1950); el fortalecimiento de una topografía inducirá a otras respuestas compatibles, pero se diferenciará de otras incompatibles, estableciéndose finalmente la clase de respuestas reforzadas (Galbicka, 1988). Retomando el epígrafe de Timberlake (1993b) en el inicio de este apartado (ver arriba), posiblemente la variabilidad en la topografía de la conducta en su nivel operante se crea a partir de la configuración de las superficies del ambiente específico con las que el sujeto está interactuando.

Hacia una psicología de las superficies

“Bajo la periferia organizada del yo
se encuentra el núcleo de un conjunto
caótico de fuerzas... La organización opera
de la superficie a la profundidad”


Si consideramos que los comportamientos de los animales se encuentran bajo las restricciones de las leyes físicas, y la interacción de los organismos con el mundo físico “está basada en ensayo y error, además de estar moldeado por la evolución..., conocer las leyes físicas que controlan ciertos movimientos en los animales, es fundamental para entender muchos patrones conductuales” (Domenici & Blake, 2000, p. 1). Un organismo al elegir entre diferentes configuraciones del comportamiento y ante diferentes configuraciones ambientales que le imponen un reto o una oportunidad, implica que hay patrones de conducta que el organismo elige para enfrentar su ambiente que se encuentran directamente bajo el control de aspectos físicos, y que las restricciones y habilidades biomecánicas del organismo determinarán los grados de libertad con los que se podrá ejecutar la conducta (Domenici & Blake, 2000; Rosenbaum et al., 1996). La concavidad con la que se posiciona una mano, o si se utilizan ambas manos para asir un objeto, dependerá en gran medida de la convexidad del objeto. En el caso de la locomoción, ésta tendrá una diferente topografía si se camina sobre una superficie plana o si se camina en una superficie inclinada, o con una sucesión de planos con ángulos regulares como una escalera.
La Figura 1 muestra, de manera ilustrativa, diferentes topografías de subir una escalera que típicamente son observadas. Ante ciertas capacidades biomecánicas que permite el desarrollo, subir una escalera bipedamente (Figura 1 izquierda) es menos probable en edades más tempranas, cuya locomoción tiende a ser cuadrúpeda (Figura 1 centro); sin embargo modificando la dimensión de la escalera, u ofreciendo un soporte manual como un pasamanos, a edades tempranas puede subirse una escalera bipedamente (Figura 1 derecha). De este mismo modo, los adultos mayores con capacidades biomecánicas atenuadas con respecto a los adultos jóvenes, modifican sus estrategias para subir escalones acercando más el pie al escalón antes de impulsarse para subir el pie contrario al siguiente escalón (Cesari, Formentti & Olivato, 2003). En estos casos, tanto la retroalimentación cinestésica, como el estado terminal de una conducta en su nivel operante dependen directamente de la configuración de las superficies con las que interactúa el organismo.

Figura 1. Topografías habituales al subir una escalera según capacidades biomecánicas de los sujetos.

Al diseñar una cámara experimental se configuran las superficies que generarán gran parte de las topografías de comportamiento relevantes para el condicionamiento (Ferster, 1953; Timberlake, 1993a, 2004), estando implicados los aspectos físicos de la cámara operante y los biomecánicos del organismo (Herrick & Karnow, 1962; Trotter, 1956, 1957). El mismo Skinner (1938), cuando describe el diseño de la caja experimental, narra el hecho de que ratas ingenuas experimentalmente, al ser colocadas dentro de la cámara experimental, presionaban la palanca con relativamente alta frecuencia (i.e. nivel operante) al explorar la parte superior de la pared, por lo que optó por colocar una malla en la parte superior de la pared frontal para reducir su espacio, evitando con ello que los sujetos se irguieran y presionaran la palanca al apoyarse sobre ella; en otros términos, para reducir el nivel operante.

Herrnstein (1961) y posteriormente Eckerman & Lanson (1969), analizaron la probabilidad de que pichones respondieran en diferentes zonas en un operando rectangular horizontal extendido (25.5 cm de ancho x 2.0 cm de alto). Cuando el comedero se encontraba ubicado en la parte central debajo
del operando (Eckerman & Lanson, 1969) las respuestas tendieron a realizarse hacia la parte central del operando; sin embargo, cuando el comedero se ubicó en la pared opuesta respecto al operando (Herrnstein, 1961), las respuestas tendieron a ejecutarse hacia los extremos del operando. Eckerman & Lanson (1969) concluyeron que las diferencias encontradas entre su experimento y el de Herrnstein (1961) se debieron a las topografías generadas a partir de la configuración de la cámara experimental, pues al cambiar la ubicación del comedero respecto al operando extendido, se alteró la topografía de la conducta (e.g. el movimiento que realiza el pichón entre el comedero y la tecla), teniendo como efecto un cambio en la zona en el que presionó la tecla.

En el caso de la presión de la palanca, modificar la posición (Flint, 1969) y altura de la palanca (ver Figura 2) altera la topografía de respuesta (Skjoldager, Pierre & Mittleman, 1993), lo cual altera la frecuencia de respuesta (Cabrera, Sanabria, Jiménez & Covarrubias, 2013), el tiempo mínimo de tiempos entre respuestas (Brackney, Cheung, Neisewander & Sanabria, 2011), y la duración de cada respuesta (Skjoldager et al., 1993).

A pesar de que la evidencia muestra que el diseño y la configuración de las superficies con las que interactúa un organismo en un procedimiento experimental es fundamental para la conducta que ahí se genera, se ha enfatizado principalmente el aspecto del control experimental (Ferster, 1953; Skinner, 1938, 1956), y en muy pocas ocasiones se ha enfatizado la relevancia teórica que la configuración de las superficies tienen como parte de la interacción organismo-medio ambiente (Timberlake, 2004).

Figura 2. La posición de una rata al presionar una palanca a diferentes alturas. Algunas medidas relevantes del organismo respecto a la configuración de la superficie: a) distancia de las extremidades inferiores a la pared, b) altura de extremidades superiores respecto a la palanca, c) distancia desde la nariz a la pared frontal, d) cantidad de movimiento de la palanca al ser presionada, e) distancia horizontal desde extremidades inferiores a nariz, y f) distancia restante entre extremidades superiores y altura máxima a la cabeza (ver Cabrera et al., 2013).
Desde la perspectiva ecológica de la psicología se ha otorgado mayor énfasis a los aspectos ambientales que configuran las superficies y estímulos que posibilitan y generan comportamiento. Gibson (1979) elaboró una nomenclatura para referirse a los eventos físicos medioambientales que juegan un papel central en la conducta de los organismos. Entre ellos se encuentran tres términos de relevancia notable: ‘medio’, ‘substancia’ y ‘superficie’. El medio puede ser aéreo o acuático y permite el desplazamiento. Las substancias son los diferentes objetos que en el medio es posible encontrarse, y es por sus superficies que distinguimos a tales substancias. Las superficies son interfaces entre substancias y el medio (i.e. aire o agua) que rodean al organismo. Son la parte visible de una substancia. Las superficies pueden persistir o cambiar, así como su configuración, textura o iluminación (Richardson, Shockley, Fajen, Riley & Turvey, 2008).

Las superficies constituyen una categoría definitoria para la conducta de los organismos. Es sobre la superficie que los organismos caminan, por la superficie cogen los objetos, trepan, cavan orificios o los cubren, etc. Para Gibson “El arreglo y la composición de las superficies constituyen lo que éstos posibilitan para la acción (‘what they afford’)” (p. 127, paréntesis añadidos). Y siendo el posibilitador de acción (affordance) un término que se refiere a la complementariedad entre el ambiente y el organismo de manera intrínseca, “la información que especifica aspectos relevantes del ambiente está acompañada necesariamente por la información que especifica al observador mismo, como su cuerpo, piernas, boca, etc.” (Gibson, 1979, p. 141).

No es sorprendente entonces que se encuentren diferencias notables en las topografías que muestran los animales en sus movimientos anticipados para obtener alimento (Zeigler, Welch-Levitt, & Levine, 1980) y al de obtener agua (Klein, LaMon & Zeigler, 1983), y que se encuentren vinculadas a las topografías de respuestas operantes (Davey & Cleland, 1982; Jenkins & Moore, 1973) pues la información del ambiente, en este caso el elemento a ingerir (agua o alimento), está acompañada de la propia información del organismo comportante, que implica el pico en el caso de pichones, u hocico y patas delanteras en el caso de ratas, y su biomecánica con el que obtendrá ya sea la comida o agua (ver Rosenthal, 1999).

Con esta perspectiva, la configuración de una superficie (surface layout) es fundamental para explicar la conducta de los organismos, ya que diferentes configuraciones de una superficie ofrece diferentes posibilitadores de acción. El plano de inclinación de una superficie es relevante para elegir el modo de locomoción en bebés (Adolph, Joh & Eppler, 2010), la distancia de un objeto es relevante para elegir el modo de alcanzarlo (Jiménez, Cabrera y Covarrubias, en revisión); la anchura (Warren & Whang, 1987) y altura (Wagman & Malek, 2008, 2009) de una entrada es relevante para considerar el modo de traspasarla; el tipo y distancia de objetos asibles al escalar una roca son relevantes para elegir el modo de treparla (Seifert, Orth, Hérault & Davids, 2013). Del mismo modo, la posibilidad de que roedores encuentren una determinada configuración de la superficie en el laberinto T influye sobre su patrón de desplazamiento (i.e. velocidad o aceleración), independiente del efecto del reforzador (Covarrubias, Guzmán, Cabrera y Jiménez, 2011), la altura de una palanca es relevante para elegir el modo de alcanzarla
CAPÍTULO II

(Cabrera et al., 2013; Skjoldager et al., 1993), y el tipo y textura de alimento es relevante para el modo de obtenerlo (Cabrera, Robayo-Castro & Covarrubias, 2010), por enumerar sólo algunas configuraciones de las superficies que han sido evaluadas experimentalmente y de las que son función ciertas conductas de los organismos. Con estos hallazgos se apoya la hipótesis que los posibilitadores de acción juegan un papel central para explicar la conducta en su nivel operante, y la topografía conductual asociada a ella.

Conclusiones

“Mucha investigación y teorización de la conducta de presionar la palanca se ha restringido sólo a una pequeña selección de las actividades de la rata al presionar la palanca. Algunas razones de esta restricción son… la falta de teorización para la investigación de presionar la palanca, y la práctica de no observar a la rata durante el experimento”

(Trotter, 1957, p. 78).

A partir de la configuración de las superficies emergen gran parte de los modos de acción, que corresponden a las topografías conductuales para interactuar con dichas superficies.

Si sobre las superficies es que se despliega el comportamiento de los organismos, para lograr mayor alcance en sus explicaciones de la conducta, el AEC debe enfatizar el análisis empírico y conceptual de aquellos aspectos ambientales, como la configuración de las superficies relevantes a un organismo. Desde una perspectiva en la que se toman en cuenta las restricciones para el aprendizaje (i.e. Hinde & Stevenson-Hinde, 1973) se hace necesario considerar aspectos de los estímulos que no necesariamente evocan de manera correspondiente una conducta, y sin embargo sí tienen influencia sobre la conducta emitida por el organismo, como parece ser el caso de los posibilitadores de acción.

Si algunos autores han considerado la relevancia de la noción de posibilitador de acción para explicar ciertos fenómenos, en el presente escrito se intentó dar un papel protagónico al posibilitador de acción, a partir del cual se torna de una relevancia especial aspectos poco atendidos por el AEC como lo son el nivel operante de una conducta, así como la topografía de respuesta.

Porque la conducta se define no sólo a partir de movimientos del cuerpo ni con posturas particularmente mecánicas, sino a partir de descripciones funcionales específicas de un evento que surge de organismo-ambiente (Richardson, et al. 2008), es que se considera que los posibilitadores de acción son inherentes a toda descripción funcional de la conducta como lo es el AEC.
Referencias


CAPÍTULO II


CAPÍTULO II


